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Oil-based corrosion inhibitors have been evaluated for carbon steel in 3.5% NaCl and saturated CO2 gas. The corrosion rate for carbon steel was determined based on the electro-chemical method using linear resistance polarization (LPR). Specimens at various inhibitor concentrations were placed in a beaker connected to a CO2 cylinder for CO2 gas bubbling. The corrosion test was conducted at room temperature and high temperature (60 oC and 80 oC). Higher temperature conditions were used to study inhibitor stability. Results obtained from the LPR test indicated that the most effective corrosion inhibitor for carbon steel had between 5 to 100 ppm concentrations. The stability test showed that inhibitor efficiency was lower at higher temperature.   
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1.	Introduction 

*Pipeline is a crucial part in oil and gas industries to transport oil and gas in order for them to be processed for further steps in refineries. In this condition pipelines will experience detrimental conditions (Ridha et al., 2013). Pipelines are exposed to corrosive elements such as CO2 gas, water vapour, NaCl, and sand particles. Corrosion will occur inside pipelines made of carbon steel or alloy steel. There will be severe forms of localized corrosion, erosion corrosion and uniform corrosion. These forms of corrosion occur when water is absorbed and collected in the local area of the pipelines. The pipelines then begin to corrode as it is exposed to water and CO2. Corrosion will attack the bottom or upper side of the pipe surface (Azhani et al., 2014). For long pipe service life, the protection system should provide a barrier of corrosive elements penetration. Currently, inhibitor is the preferred protection choice from corrosion damages (Ortega-Toledo et al., 2011; Makhlouf, 2014). But because of fluctuations in heat, different concentration of salts (NaCl) and water vapour, the concentration of inhibitor injected to the pipelines should be in a proper quantity. Low inhibitor quantity cannot protect effectively, hence promote corrosion process. While excessive quantity of inhibitor will affect production cost. The effectiveness of an inhibitor is shown by its impact on reducing corrosion rate. 
                                                 * Corresponding Author.  Email Address: ypanca@ump.edu.my (Y. Asmara) 

Recent researchers have used various types of inhibitor such as organic inhibitor or un-organic depending on environmental conditions (Mazumder et al., 2014). The use of petroleum-based inhibitor has been an alternative method for protection from corrosive environments. However, in situ application of liquid inhibitor requires several conditions with extra precautions. For example, an inhibitor exposed to high temperature will have lower concentration due to evaporation (Ai et al., 2006; Zhang et al., 2006).  
2.	Experimental	set‐up	

2.1.	Specimen	preparation	and	test	matrix	The working electrodes were made of carbon steel and the chemical composition is as shown in Table 1. The cylindrical specimens were of 12 mm diameter and 10 mm long. Before immersion, the specimen surfaces were polished successively with 240, 400 and 600 grit SiC paper, rinsed with methanol and degreased using acetone. The experiments were repeated at least twice in order to ensure reasonable reproducibility. The test matrix used to carry out the experiment is presented in Table 2. 
2.2.	Static	test	set‐up	The test assembly consisted of one-litre glass cell bubbled with CO2 gas. The electrochemical measurements were based on a three-electrode system, using a commercially available potentiostat 
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corrosion rate increased compared experiments at 60oC (Table 4). 
	

Table	4: Effects of types of inhibitor on Corrosion rate (in mm/year) in 1% NaCl-10% kerosene solutions Inhibitor Base 10 ppm 20 ppm 40 ppm 80 ppm 100 ppm AX 2 1 0.03 0.01 0.01 0.01 0.01 Efficiency (%)  97.0 99.1 99.2 99.2 99.4 AX 3 1 0.028 0.01 0.01 0.01 0.01 Efficiency (%)  97.2 99.1 99.2 99.2 99.4    This was indicated that the performance of inhibitor will change as effects of temperature. It was assumed to be caused by micro film formation was disrupted at higher temperature. The conductive film acted as an electrical barrier was interfered by corrosion process. A decrease in inhibition efficiencies with the increase temperature may relate to weakening of physical adsorption. The dependence of temperature on activation parameters for the corrosion process is expressed by the equation of transition state as proposed by Arrhenius equation (8) and transition state equation (Chetouani and Hammouti, 2014).   

 
Fig.	2: Inhibitor performance at 60oC and 80oC under 3.5% NaCl and CO2 gas 
3.3.	Thermal	stability	test		Thermal stability is the stability of an inhibitor molecule at high temperatures. An inhibitor molecule with greater stability has more resistance to decomposition at high temperatures. The effects of thermal stability of inhibitor and time are presented in Fig. 3.	

 
Fig	3:	Inhibitor performance after 60oC and 80oC thermal stability test at 60oC bubble test under 3.5% NaCl and CO2 gas  Fig. 3 describes the stability of the inhibitor at 60oC and 80oC. It is shown that the inhibitor still had an acceptable protection at high temperature. However, the efficiency of inhibitor at higher 

temperature (80oC) was slightly reduced compared to lower temperature (60oC). At 80oC, the corrosion rate shows an unstable pattern which indicated the properties of inhibitor has degraded.  
4.	Conclusions	The use of corrosion inhibitor is an important aspect in reducing corrosion rate. The best corrosion inhibitor can be determined by corrosion efficiency.  Laboratory testing showed that the efficiency of an inhibitor is determined by its concentration and temperature. Higher concentration has higher inhibitor efficiency. Higher temperature cause lower inhibitor efficiency. The properties of an inhibitor can change due to temperature. From the thermal stability test, it was shown that the inhibitor property has changed at higher temperature.  Concentration was a dominant factor governing the reaction process in CO2/kerosene system.  
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